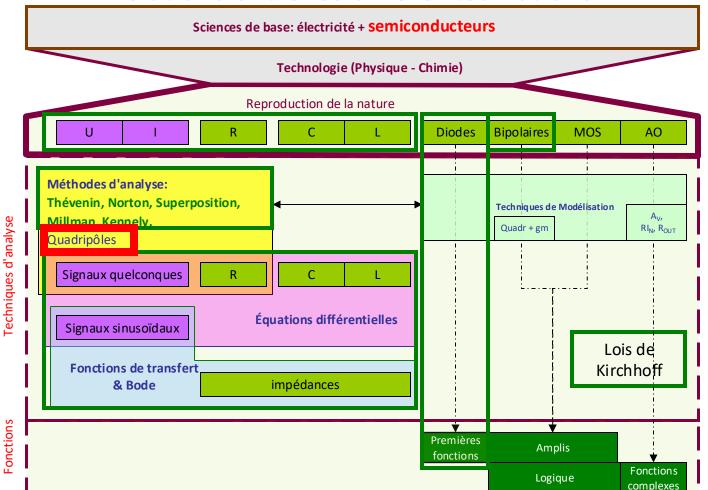
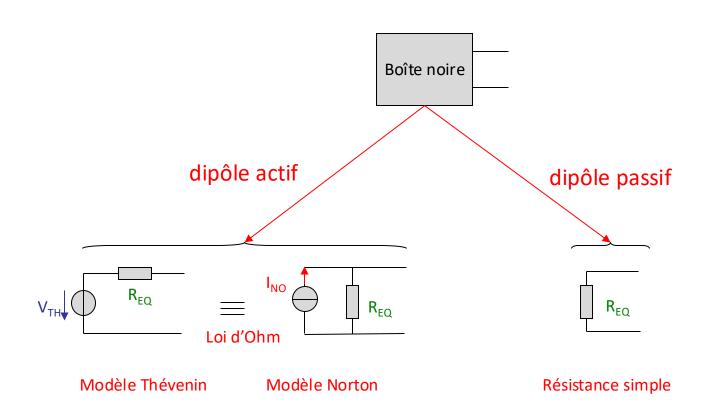
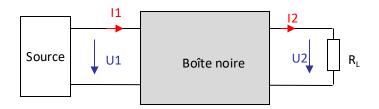
Relations entre les différentes notions



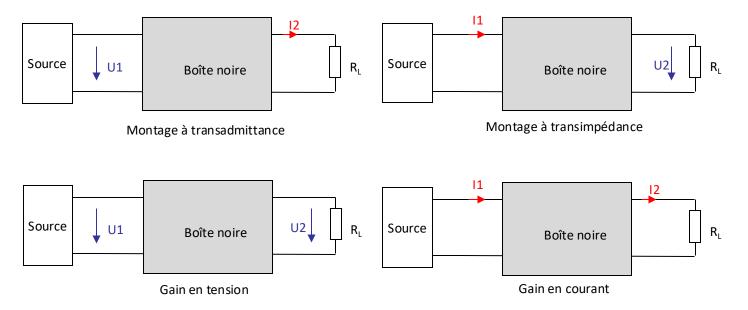
Rappel dipôle



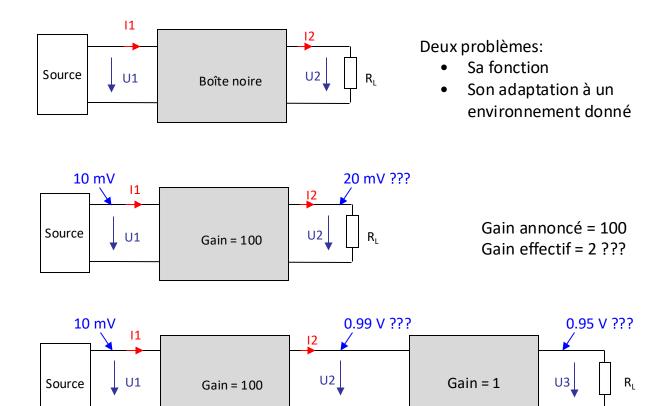
Reproduction du concept de boîte noire pour les quadripôles



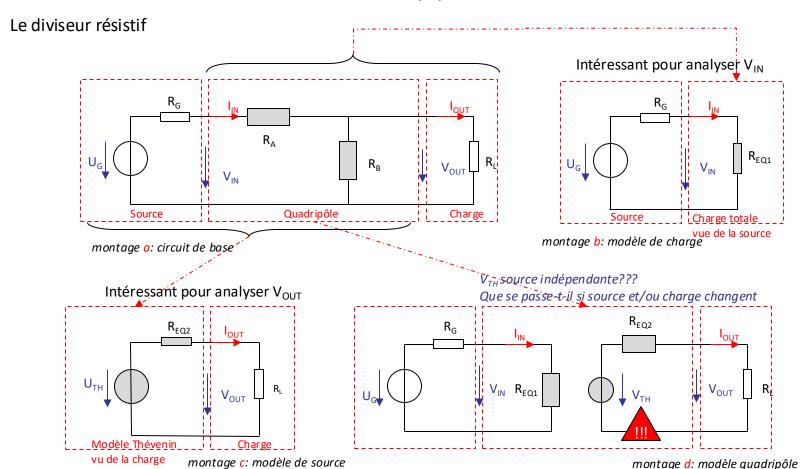
Généralement deux grandeurs nous suffisent (pour les modèles unilatéraux)



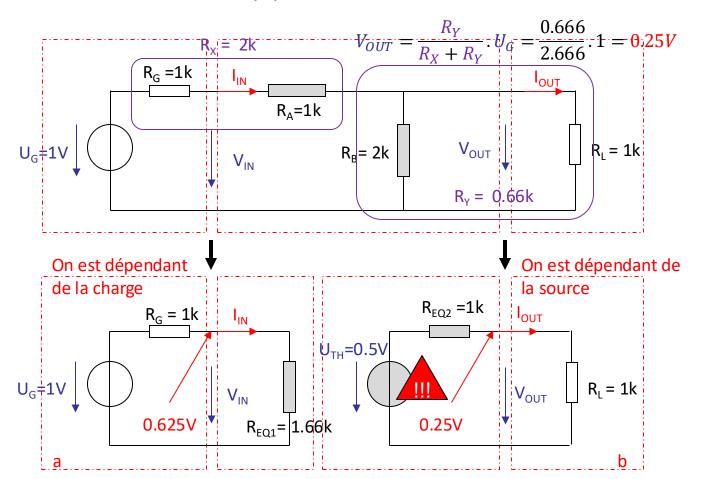
Application des quadripôles



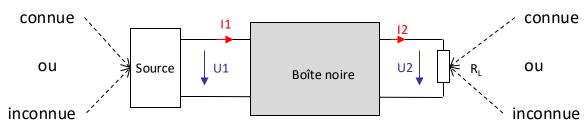
Première application [1]



Première application [2] : Calculs



Les situations analysées



- 1. Source et charge connues: Pas besoin de modéliser (tout est figé)
- 2. Source inconnue et charge connue: Modéliser la boîte noire pour être indépendante de la source
- 3. Source connue et charge inconnue : Modéliser la boîte noire pour être indépendante de la charge
- 4. Source et charge inconnues: Modéliser la boîte noire pour être indépendante de la charge et de la source

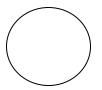
Attention:

- Les modèles proposés doivent permettre de calculer l'impact de la source et de la boîte noire sur une **charge uniquement** (différent si c'était une source).
- Quelle que soit la configuration, les applications numériques pour la charge doivent être identiques.
- Les localisations de la source et de la charge sont connues.

Cas général: On ne sait pas où sont localisées la source et la charge et on ne connaît pas leurs valeurs

Éléments complémentaires de modélisation

Source indépendant VS source dépendante

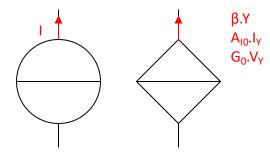


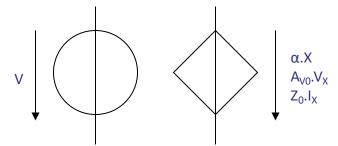
Source autonome (indépendante) Ex: le Soleil

LX. IC JOICII

Source dépendante

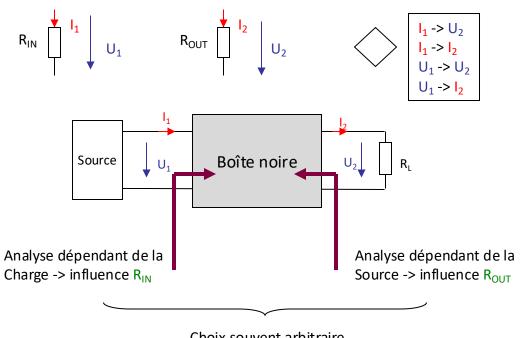
Ex: Un ruisseau qui s'écoule à la suite de la fonte d'un glacier soumis aux rayons du soleil





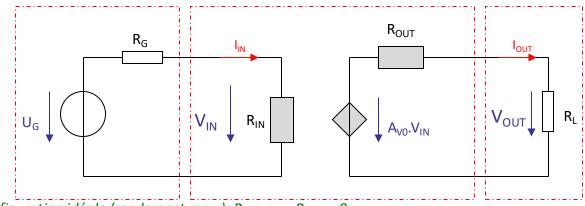
Influence de la source et de la charge

Vue de l'extérieur la boite noire présente 4 valeurs (I_1, U_1, I_2, U_2) Il faut donc trois relations pour lier ces 4 valeurs. Ces trois relations peuvent être décrites à partir de 3 composants:



Modélisation [1]

Gain en tension



Configuration idéale (rendement max.): $R_{IN} = \infty$, $R_{OUT} = 0$

Principe du ohmmètre qui remplace la source

Si la charge est connue

$$R_{IN} = \frac{V_{IN}}{I_{IN}} \bigg|_{f(RL)}$$

Si la source est connue

$$R_{IN} = \frac{V_{IN}}{I_{IN}}\bigg|_{R_L = \infty}$$

Principe du ohmmètre qui remplace R

$$R_{OUT} = \frac{V_{OUT}}{I_{OUT}} \bigg|_{V_{IN} = 0}$$

$$R_{OUT} = \frac{V_{OUT}}{I_{OUT}} \bigg|_{f(R_c), UG=0}$$

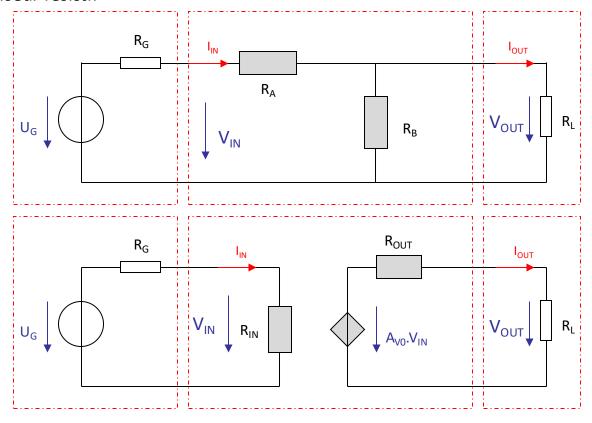
Gain nominal, éliminer R

$$A_{V0} = \frac{V_{OUT}}{V_{IN}} \bigg|_{I_{OUT} = 0}$$

$$A_{V0} = \frac{V_{OUT}}{V_{IN}}\bigg|_{I_{OUT} = 0}$$

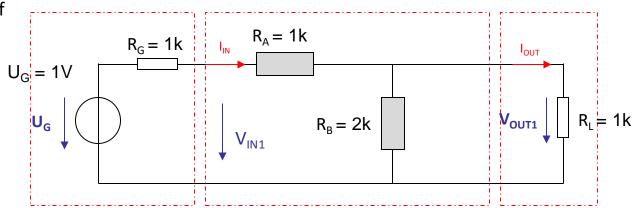
Premier exemple

Le diviseur résistif



Premier exemple - développement [1]

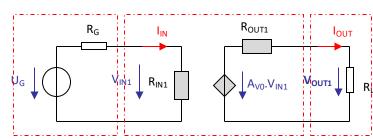
Le diviseur résistif



Modèle source inconnue, charge connue

$$R_{IN1} = R_A + (R_B \parallel R_L) = \frac{5}{3}k\Omega$$

 $R_{OUT1} = R_B \parallel R_A = \frac{2}{3}k\Omega$
 $A_{V0} = \frac{R_B}{R_A + R_B} = \frac{2}{3}$



$$V_{IN1} = U_G \frac{R_{IN1}}{R_{IN1} + R_G} = 1 * \frac{\frac{5}{3}}{\frac{5}{3} + 1} = \frac{5}{8}V$$

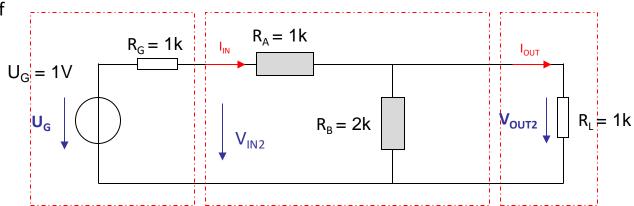
$$A_{V0}.V_{IN1} = \frac{2}{3} * \frac{5}{8} = \frac{10}{24}V$$

$$V_{OUT1} = A_{V0}.V_{IN1}.\frac{R_L}{R_{OUT1} + R_L}$$

$$V_{OUT1} = \frac{10}{24} * \frac{1}{\frac{2}{3} + 1} = \frac{10}{24} * \frac{3}{5} = \mathbf{0.25V}$$

Premier exemple - développement [2]

Le diviseur résistif

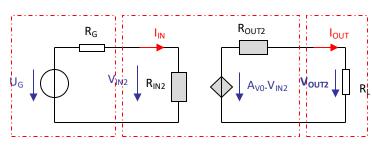


Modèle source connue, charge inconnue

$$R_{IN2} = R_A + R_B = 3 k\Omega$$

$$R_{OUT2} = R_B \parallel (R_A + R_G) = 1k\Omega$$

$$A_{V0} = \frac{R_B}{R_A + R_B} = \frac{2}{3}$$



$$V_{IN2} = U_G \frac{R_{IN2}}{R_{IN2} + R_G} = 1 * \frac{3}{3+1} = \frac{3}{4}V$$

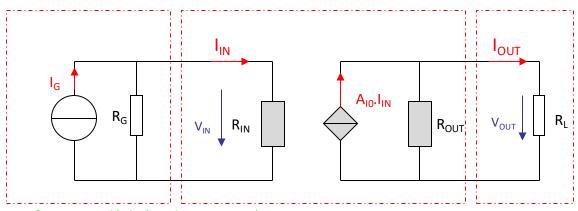
$$A_{V0}.V_{IN2} = \frac{2}{3} * \frac{3}{4} = 0.5 V$$

$$V_{OUT2} = A_{V0}.V_{IN2}.\frac{R_L}{R_{OUT2} + R_L}$$

$$V_{OUT2} = 0.5 * \frac{1}{1+1} = 0.25V CQFD$$

Modélisation [2]

Gain en courant



Configuration idéale (rendement max.): $R_{IN} = 0$, $R_{OUT} = \infty$

Si la charge est connue

$$R_{IN} = \frac{V_{IN}}{I_{IN}} \bigg|_{f(RL)}$$

$$R_{OUT} = \frac{V_{OUT}}{I_{OUT}}\bigg|_{I_{IN} = 0}$$

$$A_{I0} = \frac{I_{OUT}}{I_{IN}} \bigg|_{V_{OUT} = 0}$$

Si la source est connue

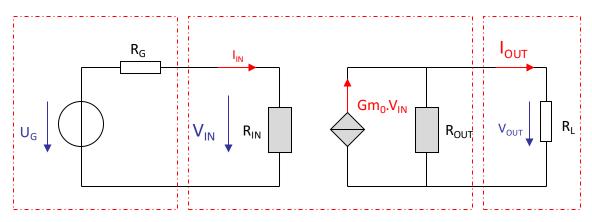
$$R_{IN} = \frac{V_{IN}}{I_{IN}} \bigg|_{R_I = \infty}$$

$$R_{OUT} = \frac{V_{OUT}}{I_{OUT}} \bigg|_{f(R_G), IG=0}$$

$$A_{I0} = \frac{I_{OUT}}{I_{IN}} \bigg|_{V_{OUT} = 0}$$

Modélisation [3]

Transadmittance



Configuration idéale (rendement max.): $R_{IN} = \infty$, $R_{OUT} = \infty$

Si la charge est connue

$$R_{IN} = \frac{v_{IN}}{I_{IN}} \bigg|_{f(RL)}$$

$$R_{OUT} = \frac{V_{OUT}}{I_{OUT}}\bigg|_{V_{IN} = 0}$$

$$G_{m0} = \frac{I_{OUT}}{V_{IN}} \bigg|_{V_{OUT} = 0}$$

Si la source est connue

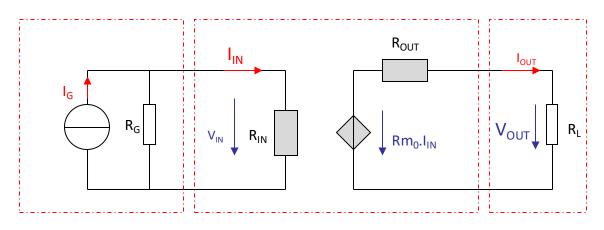
$$R_{IN} = \frac{V_{IN}}{I_{IN}} \bigg|_{R_{*} = \infty}$$

$$R_{OUT} = \frac{V_{OUT}}{I_{OUT}} \bigg|_{f(R_c), UG=0}$$

$$G_{m0} = \frac{I_{OUT}}{V_{IN}}\bigg|_{V_{OUT} = 0}$$

Modélisation [4]

Transimpédance



Configuration idéale (rendement max.): $R_{IN} = 0$, $R_{OUT} = 0$

Si la charge est connue

$$R_{IN} = \frac{V_{IN}}{I_{IN}} \bigg|_{f(RL)}$$

$$R_{OUT} = \frac{V_{OUT}}{I_{OUT}} \bigg|_{I_{IN} = 0}$$

$$R_{m0} = \frac{V_{OUT}}{I_{IN}} \bigg|_{I_{OUT} = 0}$$

Si la source est connue

$$R_{IN} = \frac{V_{IN}}{I_{IN}} \bigg|_{R_{I} = \infty}$$

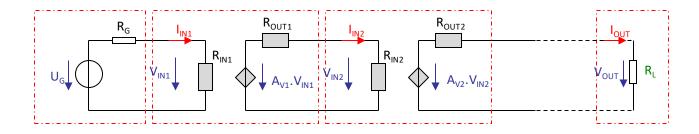
$$R_{OUT} = \frac{V_{OUT}}{I_{OUT}} \bigg|_{f(R_G), IG=0}$$

$$R_{m0} = \frac{V_{OUT}}{I_{IN}} \bigg|_{I_{OUT} = 0}$$

Objectifs

Mettre en cascade des blocs fonctionnels

- Complexité intrinsèque de chaque bloc
- Masse d'information à gérer



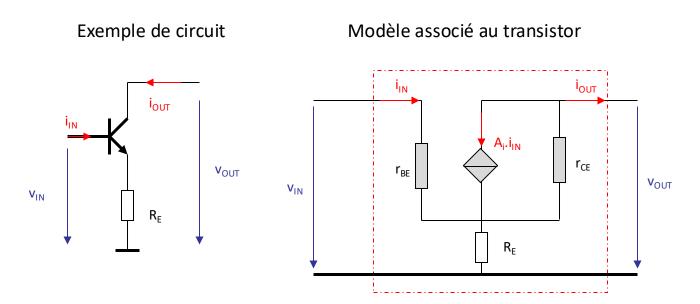
Créer des librairies de fonctionnalités avec:

- R_{IN}, R_{OUT}, source
- Les expressions des trois paramètres

Amplis bilatéraux

(voir cours sur les transistors)

Entrée et sortie s'influencent mutuellement



Transformation possible pour retrouver l'un des quatre modèles de base

Cas Général

Indépendance totale de l'environnement

Bloc G et Bloc D non spécifiés

Nous avons ici 16 configurations différentes:

Vue de Bloc G:

- une résistance et
- un élément de transformation (Gain en tension, gain en courant, transimpédance, transadmittance)

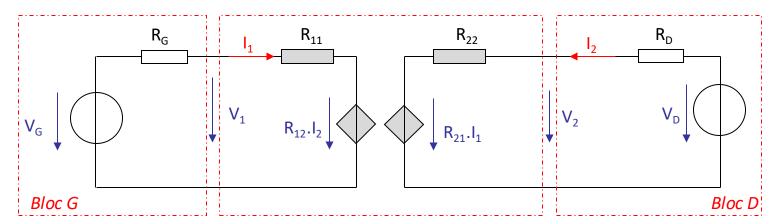
Vue du Bloc D:

- une résistance et
- un élément de transformation (Gain en tension, gain en courant, transimpédance, transadmittance)

Cas Général

Représentation matricielle du quadripôle

1 modèle parmi les 16 modèles possibles



L'analyse des branches V_1 et V_2 $V_1 = R_{11} I_1 + R_{12} I_2$ donne les relations suivantes $V_2 = R_{21} I_1 + R_{22} I_2$

$$V_1 = R_{11}. I_1 + R_{12}. I_2$$

 $V_2 = R_{21}. I_1 + R_{22}. I_2$

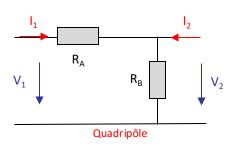
On peut représenter ces relations de manière matricielle

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

et transrésistances reste très intuitive

La formulation des différentes résistances
$$R_{11}=\frac{V_1}{I_1}\Big|_{I_2=0}$$
 $R_{12}=\frac{V_1}{I_2}\Big|_{I_1=0}$ $R_{21}=\frac{V_2}{I_1}\Big|_{I_2=0}$ $R_{22}=\frac{V_2}{I_2}\Big|_{I_1=0}$ et transrésistances reste très intuitive

Exemple



Mise en équation

$$V_1 = R_{11}. I_1 + R_{12}. I_2$$

 $V_2 = R_{21}. I_1 + R_{22}. I_2$

Calcul des résistances
$$R_{11} = \frac{V_1}{I_1}\Big|_{I_2=0} = R_A + R_B = 3k\Omega, \qquad R_{12} = \frac{V_1}{I_2}\Big|_{I_1=0} = R_B = 2k\Omega$$
 et transrésistances $R_{21} = \frac{V_2}{I_1}\Big|_{I_2=0} = R_B = 2k\Omega, \qquad R_{22} = \frac{V_2}{I_2}\Big|_{I_1=0} = R_B = 2k\Omega$

